7 Advanced Topics

7.1 Aims

By the end of this worksheet you will be able to:

Q Use array functions
Q Create larger programs aided by "Flow Charts"

7.2 Array Functions

FORTRAN provides a number of intrinsic functions that are useful for working with arrays. Among
these are some which are specifically aimed at working with matrices and vectors.

MATMUL Matrix/vector Matrix multiplication of two matrices or a matrix
and a vector.

DOT_PRODUCT Vector Scalar (dot) product of two vectors

TRANSPOSE Matrix Transpose of a matrix

MAXVAL Any array Maximum value of an array, or of all the elements
along a specified dimension of an array.

MINVAL Any array Minimum value of an array, or of all the elements
along a specified dimension of an array.

SUM Any array Sum of all the elements of an array, or of all the

elements along a specified dimension of an array.

Program matrixmul.f95, demonstrates the use of these functions. Additionally, it includes two
subroutines that are likely to be useful when handling matrix/array manipulations: fill_array which
fills the array elements and outputra which prints the values of the array elements to the screen. This
program is also an example of dynamic memory allocation.

program matrixmul
1
1

demonstrates use of matmul array function and dynamic
allocation of array

real, allocatable, dimension(:,:) :: ral,ra2,ra3
integer I: size

Tinitialize the arrays
print*, "Shows array manipulation using SQUARE arrays."
print*, "Allocate the space for the array at run time."
print*, "Enter the size of your array”
read *, size
allocate(ral(size,size),ra2(size,size),ra3(size,size))
print*, "enter matrix elements for ral row by row"
call fill _array(size,ral)
print*, “enter matrix elements for ra2 row by row"
call fill_array(size,ra?)

Techo the arrays
print *,"ral"
call outputra(size,ral)

Copyright © Janet A Nicholson 2011 40 fortrantutorial.com




print *,"ra2*
call outputra(size,ra?)

Idemonstrate the use of matmul and transpose intrinsic
Ifunctions

ra3=matmul(ral,ra2)

print *,"matmul of ral and ra2-
call outputra(size,ra3)
ra3=transpose(ral)

print *,"transpose of ral”

call outputra(size,ra3)
deallocate(ral,ra2,ra3)

end program matrixmul

subroutine outputra(size,ra)
implicit none
Iwill output a real square array nicely

integer :: size,row,col
real ,dimension(size,size) Il ra
character o reply*l

do row =1,size
write(*,10) (ra(row,col),col=1,size)
10 format(100F10.2)

Tas we don"t know how many numbers_are to be output, specify
Imore than we need - the rest are ignored

end do

print*,”
print*,"Hit a key and press enter to continue”
read *,reply
end subroutine outputra

subroutine fill_array(size,ra)
implicit none
Ifills the array by prompting from keyboard

integer :: row,col,size
real I num
real, dimension(size,size) Il ra

do row=1,size
do col=1,size
print *, row,col
read *,num
ra(row,col)=num
end do
end do
end subroutine fill_array

Copyright © Janet A Nicholson 2011 41 fortrantutorial.com




Exercise 7.1

Write a program to read in 2 square matrices (of any size). Confirm that the matrices obey the rule
(AB)) ~ B'A’

where A’ isthe transpose of matrix A.

Exercise 7.2

Write a program that will read a 3 X 3 matrix from a data file. In the program, include a subroutine
that will generate any cofactor cof of the matrix mat. Call the subroutine cofactor and use these
arguments:

subroutine cofactor(i,j,mat,cof)

implicit none

real :: mat(3,3),minor(2,2),cof

integer :: elrow,elcol

I cof — the cofactor of matrix mat for element 1i,j

Exercise 7.3

Use the program you developed Exercise 7.2 to calculate the determinant of a 3 X 3 matrix.

7.3 Writing REAL programs - Flow Charts

Now that you know all the main elements of FORTRAN 95, you are in a position to apply your skills to
writing REAL programs. Unlike most of the exercises in these worksheets, REAL programs tend to be
rather large. In large programs, the underlying logic can often be difficult to follow.

It helps, therefore, both in the devising of a program and later in its maintenance, to have a plan of
what you intend the program to do. Let’s take, as an example, a program that works like a calculator.

The flowchart is shown on the next page. The logic of the program, as a whole, is clear. Details like
what will happen in the subroutines is glossed over at this stage.

In commercial programming, flowcharts are usually formalized, with specific shapes for boxes that do

different things. That need not concern us here. Essentially, we use flowcharts to provide a ‘map’ of
the underlying logic flow in the program — what connects with what.

Copyright © Janet A Nicholson 2011 42 fortrantutorial.com




Start

4
L

\ 4

Display menu of choices
A,B,C,D

User chooses A

A 4

Subroutine Subtract

A 4

Subroutine multiply

A 4

Subroutine power

A

Sorry, bad input

A 4

Subroutine trig

No

A

Copyright © Janet A Nicholson 2011 43

Yes

Have you finished?

Stop

fortrantutorial.com






