6 Subroutines and Functions

6.1 Aims

By the end of this worksheet you will be able to:

O Understand the use of subroutines and functions to make your code more efficient and
easier to read.

6.2 Re-using code - the subroutine
Examine the following program

program output
implicit none

real ,dimension(3) :: a,b,c
character :: answer*1l
linitialise arrays

a=1.5

b =2.5

c = 3.5

write(*,1) "aT",a

print *, “"type y to continue or any other key to finish®
read *, answer

if (answer /= "y") stop

write(*,1) "b",b

print *, "type y to continue or any other key to finish*®
read *, answer

if (answer /= "y") stop

write(*,1) "c",c

print *, "type y to continue or any other key to finish*®
read *, answer

if (answer /= "y") stop

write(*,1) "a*b*c",a * b * c
1 format(a,3f8.3)

end program output

The program sets up some arrays and then outputs them. At three stages in the program (bolded), it
asks whether it should continue; it stops if the answer is not 'y'. Notice that the three bolded parts of
the code are identical.

Simple enough — but look at the amount of code! Most of it is the same — wouldn't it be nice to re-use
the code and cut down on the typing? The answer is to use subroutines.

Copyright © Janet A Nicholson 2011 35 fortrantutorial.com

program outputl

implicit none

real ,dimension(3) :: a,b,c
linitialise arrays

a=1.5

b=2.5

c = 3.5

write(*,1) "a",a

call prompt(Q)

write(*,1) "b",b

call prompt()

write(*,1) "c*",c

call prompt(Q)

write(*,1) "a*b*c",a * b * c
1 format(a,3f8.3)

end program outputl
I +++++++++++++H++H+

subroutine prompt()
Iprompts for a keypress

implicit none

character answer*1

print *, “"type y to continue or any other key to finish*

read *, answer

if (answer /= "y") stop

end subroutine prompt

Examine the code, each time we use type
call prompt()
the program jumps to the line
subroutine prompt()
then executes each line of the code it finds in the subroutine until it reaches the line
end subroutine prompt
and then returns to the main program and carries on where it left off.
The program is much easier to understand now. All the code for prompting is in one place. If we ever

need to change the code which prompts the user to continue, we will only ever need to change it
once. This makes the program more maintainable.

6.3 Arguments to subroutines

We have seen that subroutines are very useful where we need to execute the same bit of code
repeatedly.

The subroutine can be thought of as a separate program which we can call on whenever we wish to
do a specific task. It is independent of the main program — it knows nothing about the variables used
in the main program. Also, the main program knows nothing about the variables used in the
subroutine. This can be useful —we can write a subroutine using any variable names we wish and we
know that they will not interfere with anything we have already set up in the main program.

Copyright © Janet A Nicholson 2011 36 fortrantutorial.com

This immediately poses a problem — what if we want the subroutine to do calculations for us that we
can use in the main program? The following program uses arguments to do just that.

Example: a program that calculates the difference in volume between 2 spheres.

program vols
ICalculates difference in volume of 2 spheres
implicit none
real :: radl,rad2,voll,vol2
character :: response
do
print *, "Please enter the two radii”
read *, radl,rad2
call volume(radl,voll)
call volume(rad2,vol2)
write(*,10) "The difference in volumes is, ",abs(voll-vol2)
10 format(a,2f10.3)
print *, "Any more? - hit Y for yes, otherwise hit any key"
read *, response
if (response /= "Y" .and. response /= "y") stop
end do
end program vols

subroutine volume(rad,vol)
implicit none
real :: rad,vol,pi
Icalculates the volume of a sphere
pi=4.0*atan(1.0)
vol=4_/3_*pi*rad*rad*rad
I1t*s a little quicker in processing to do r*r*r than r**3!
end subroutine volume

When the program reaches the lines
call volume(radl,voll)

It jumps to the line
subroutine volume(rad,vol)

The values, radl and voll are passed to the subroutine. The subroutine calculates a value for the
volume and when the line :

end subroutine volume

is reached, the value of the volume is returned to the main program

Points to notice — these are very important — please read carefully

O You may have several subroutines in your program. ldeally, a subroutine should do a specific
task — reflected by its name.

Q All the variables in subroutines, apart from the ones passed as arguments, are 'hidden' from
the main program. That means that you can use the same names in your subroutine as in the
main program and the values stored in each will be unaffected — unless the variable is passed
as an argument to the subroutine.

Q Itisvery easy to forget to declare variables in subroutines. Always use implicit none in your
subroutines to guard against this.

Copyright © Janet A Nicholson 2011 37 fortrantutorial.com

Q All the variables in the subroutine must be declared.

O The positioning of the arguments (in this case, rad and vol) is important. The subroutine has
no knowledge of what the variables are called in the main program. It is vital that the
arguments agree both in position and type. So, if an argument to the subroutine is real in
the main program, it must also be real in the subroutine.

Q If an argument to the subroutine is an array, it must also be declared as an array in the
subroutine.

Exercise 6.1

Write a program that calculates the difference in area between two triangles. Your program should
prompt the user for the information it needs to do the calculation. Use a subroutine to calculate the
actual area. Pass information to the subroutine using arguments.

6.4 User Defined Functions

We have already met FORTRAN intrinsic functions like abs, cos, sqrt. We can also define our own
functions —they work in a similar way to subroutines.

As an example, let's write a program (func.f95) that does some trigonometry. As you know, the trig
routines in FORTRAN use radians, not degrees - so it would be nice to write a function that does all
the conversion for us.

print *,"Enter a number*

read *, a

pi=4_.0*atan(1.0)

print *,"the sine of ",a,” is ",sin(a*pi/180)
In this snippet, we are having to code the conversion from degrees to radians directly into the main
part of the program. That's OK for a 'one-off', but what if we needed to do the conversion several
times. Now look at this:

program func

ITdemonstrates use of user defined functions

implicit none

integer, parameter :: ikind=selected_real_kind(p=15)

real (kind=ikind):: deg,rads

print *, "Enter an angle in degrees”

read *, deg

write(*,10) "sin = " ,sin(rads(deg))
write(*,10) "tan = " ,tan(rads(deg))
write(*,10) "cos = ",cos(rads(deqg))

10 format(a,f10.8)
end program func

function rads(degrees)
implicit none

integer, parameter :: ikind=selected real kind(p=15)
! returns radians
real (kind=ikind) :: pi,degrees,rads

pi=4.0_ikind*atan(1.0_ikind)
rads=(degrees*pi/180.0_ikind)
end function rads

What we have done, in effect, is to create our own function rads, which is used in an identical way to
the intrinsic ones you have used already like sqrt, cos, and abs.

When the line

Copyright © Janet A Nicholson 2011 38 fortrantutorial.com

write(*,10) "sin = " ,sin(rads(deg))

is reached, the program jumps to

function rads(degrees)

the value, degrees, is passed to the function. The function does some computation, then finally
returns the calculated value to the main program with the line

rads=(degrees*pi/180.0_ikind)

Note carefully that it doesn't return the value in the argument list (as does a subroutine) but actually
assigns the value to its own name rads.

O The function rads converts the value of the argument, degrees, to radians.
O Notice that we must declare the data type of the function both in the main program, and in
the function itself as if it were a variable.
O Functions return one value. This value, when calculated, is assigned to the name of the
function as if it were a variable —
rads=(degrees*pi/180.0_ikind)

Exercise 6.2

Write a program that includes a function called
real function average(n,list)
where n is integer and is the number of items in the list, and list is a real array.

Write suitable code for reading the numbers from a file (or keyboard), and output the average of the
numbers.

Exercise 6.3

Write a program that allows a user to enter the size of a square matrix. In the program write a
subroutine to compute a finite difference matrix. Ensure your output is neatly formatted in rows and
columns.

So, for a 10 by 10 matrix, we expect output to look like this

2-1000000O00O
-12-10000000
0-12-1000000
00-12-100000
000-12-10000
000O0-12-1000
00000-12-100
00000O0-12-10
00000O0OO0-12-1
00000O0OO0OO0-12

Check your attempt with finite.diffs.f95 on the website.

Copyright © Janet A Nicholson 2011 39 fortrantutorial.com

