5 Arrays and Formatted 1/0

5.1 Aims

By the end of this worksheet you will be able to:
O Understand the use of arrays
O Improve the appearance of your output

5.2 Arrays

Let us imagine that we want to find the average of 10 numbers. One (crude) method is shown in the
next program.

program av

real :-: x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,average

read *, x1,x2,x3,x4,x5,%x6,x7,x8,x9,x10

average= (X1 + x2 + x3 + x4 + x5 + x6 + X7 + x8 + x9 + x10)/10

print *, “the average is ",average

print *, “the numbers are:*

print *, x1

print *, x2

print *, x3

print *, x4

print *, x5

print *, x6

print *, x7

print *, x8

print *, x9

print *, x10

end program av
This approach is messy, involves a lot of typing and is prone to error. Imagine if we had to deal with
thousands of numbers!

The way around this is to use arrays. An array is a list that we can access through a subscript. To
indicate to FORTRAN that we are using an array, we just specify its size when we declare it.

real, dimension(100) ::x

x(l)-= 3
x(66) = 4

This snippet of code allocates 100 memory locations to the array x. To access an individual location,
called an array element, we use a subscript — here we are assigning the number 4 to the 66" element
of array x and 3 to the 1% element.

Now let's return to program av at the start of this worksheet, we'll re-write it using an array.

Copyright © Janet A Nicholson 2011 27 fortrantutorial.com

program av2
implicit none

real ,dimension(10) :: X

real I: average,sum
integer el |

print *, “enter 10 numbers-®
sum=0.0

do i=1,10

read *, x(i)
sum=sum+x (i)
end do
average=sum/10
print *, "the average is
print *, "the numbers are®
print *,x
end program av2

,average

Notice that if we type

print*, x

the program will print out the entire contents of the array.

The additional benefit of this program is that with very few changes, we could make it deal with any
number of items in our list. We can improve on this still further by making use the parameter data

type:

program av3
=just change the value of the parameter to change the size of the
Tarra

implicit none

integer, parameter o imax = 10
real ,dimension(imax) :: X

real I: average,sum
integer e |

print *, "enter’ ,imax, ’ numbers*®
sum=0.0

do i=1,imax
read *, x(i)
sum=sum+x(i)
end do
average=sum/imax
print *, "the average is
print *, "the numbers are”
print *,x
end program av3

,average

Note this is an example of good programming. The code is easily maintainable — all we have to do to
find an average of a list of numbers of any size is just to change the size of the parameter imax. We
can also allocate the size of the array at run time by dynamically allocating memory.

Copyright © Janet A Nicholson 2011 28 fortrantutorial.com

The following program demonstrates the use of arrays where we do not know the size of the array.

program alloc

implicit none

integer, allocatable,dimension(:):: vector

Inote syntax - dimension(:)

integer :: elements,i

print *,"enter the number of elements in the vector”

read *,elements
allocate(vector(elements))
lallocates the correct amount of memory
print *," your vector is of size ",elements,”. Now enter each
element”
do i=1,elements
read *,vector(i)
end do
print *,"This is your vector”
do i=1,elements
print *,vector (i)
end do

deal locate(vector)
1tidies up the memory

end program alloc
The program is called alloc.f95 and can be copied from the web page. Note in particular the bolded
lines. The new way of declaring the array vector tells the compiler that it is allocatable — ie the size

will be determined at run time.

We shall look at this further in Section 7.

Exercise 5.1

Write a program that asks the user how many numbers they want to enter, call this value imax.
Allocate imax elements to two arrays, a and b. Read in imax numbers to a and do the same to b. Print
out the arrays a, b and print out the sum of a and b. Compare your attempt with sumalloc.f95.

5.3 Array magic

One of the benefits of arrays is that you can easily do operations on every element by using simple
arithmetic operators.

program ramagic

implicit none

real ,dimension(100) :: a,b,c,d
open(10,file="data.txt")
read(10,*) a

b=a*10

c=b-a

Copyright © Janet A Nicholson 2011 29 fortrantutorial.com

d=1

print *, "a= ",a

print *, b= ",b

print *, “"c= ",c
*

print *, *d= *,d
end program ramagic

Exercise 5.2

Copy program ramagic.f95 and file data.txt to your own filespace. Run the program and examine the
output.

Exercise 5.3

Write a program that fills a 10 element array x with values between 0 and .9 in steps of .1. Print the
values of sin(x) and cos(x) using the properties of arrays to simplify your program. Compare your
answer with ramagic2.f95.

5.4 Multi dimensional arrays

The arrays we have looked at so far have been one dimensional, that is a single list of numbers that
are accessed using a single subscript. In concept, 1 dimensional arrays work in a similar way to
vectors. We can also use two dimensional arrays which conceptually are equivalent to matrices.
So, for example,

Integer, dimension(5,5) :: a

sets up a storage space with 25 integer locations.

The next program creates a 2 dimensional array with 2 rows and 3 columns. It fills all locations in
column 1 with 1, columns 2 with 2, column 3 with 3 and so on.

program twodra
implicit none

integer,dimension(2,3) Il a
integer ::row,col,count
count = 0

Icreates an array with 3 cols and 2 rows
Isets col 1 to 1, col2 to 2 and so on
do row=1,2
count=0
do col =1,3
count=count+1
a(row,col)=count

end do
end do
do row=1,2
do col =1,3
print *,a(row,col)
end do
end do

end program twodra

Copyright © Janet A Nicholson 2011 30 fortrantutorial.com

FORTRAN actually allows the use of arrays of up to 7 dimensions, a feature which is rarely needed. To
specify a extended precision 3 dimensional array b with subscripts ranging from 1 to 10, 1to 20 and 1
to 30 we would write:

real (kind=ikind),dimension(10,20,30) :: b

Exercise 5.4

Using a 4*4 array create an identity matrix, that is, a matrix of the form:

1000
0100
0010
0001

and output it. Wouldn't it be nice if we could actually output the matrix elements in rows and
columns? At the end of this section we shall see exactly how to do this.

5.5 Formatting your output

You may now be wondering if there is any way to have better control over what your output looks
like. So far we have been using the default output option — that's what the *'s are for in the write and
print statements:

write(10,*) X,y,z
print *, "program finished"

Exercise 5.5

Copy format.f95, and run it
program format
implicit none
Idemonstrates use of the format statement

integer, parameter :: ikind=selected real kind(p=15)
real , dimension(4) IIX
integer, dimension(4) I nums
integer el |
real(kind=ikind) ,dimension(4) :: computed
IFill up the arrays with something

doi=1,4

nums(i) =i *10

computed (i) = cos(0.1*1)

x(1) = computed(1)
end do

print *,"nums - integer”
write(*,1) nums
1 format(2i10)
print *, "x - real”
write(™,2) x
2 format(f6.2)
print *, “computed - double precision®
write(*,3) computed
3 format(f20.7)

Copyright © Janet A Nicholson 2011 31 fortrantutorial.com

end program format

You can see that the write and format statements come in pairs.

write(output device,label) variable(s)
label format(specification)

We are using in this example a * as the output device — in other words, the screen.

The format statement can actually go anywhere in the program, but by convention we usually place
them just after the associated write or all together at the end of the program. It's just a matter of
taste.

The tricky part here is the specification. There are different specifications for integer, real, and
character variables.

5.5.1 Integer Specification

General form : nim

Right justified
m is the number of character spaces reserved for printing (including the sign if there is one)
If the actual width is less than m, blanks are printed

a
a
a
Q nisthe number of integers to output per line. If omitted, one number is output per line.

5.5.2 Floating point Specification

General form : nfm.d

O Right justified

O m s the number of character spaces reserved for printing (including the sign if there is one),
and the decimal point.

Q If the actual width is less than m, blanks are printed

Q nisthe number of real numbers to output per line. If omitted, one number is output per
line.

Q disthe number of spaces reserved for the fractional part of the number — filled with 0's if
fewer spaces are needed. If the fractional part is too wide it is rounded.

If the total width for output (m) is too small, FORTRAN will just output *'s.

Rule m >= width of the integer part plus
d plus
1 (space for decimal point) plus
1 (space for sign — if negative)

Essentially, make m nice and wide and you won't have any trouble!

5.5.3 Exponential Specification

General form nEm.d

O Alternative specification for outputting real

Q dis the number of decimal places

QO m is the total width of the field including the sign (if any), the character E and its sign, the
decimal point and the number of places of decimals. Again make m nice and wide to ensure
the field is properly printed out.

Q nisthe number of exponential numbers to output per line. If omitted, one number is output
per line.

Copyright © Janet A Nicholson 2011 32 fortrantutorial.com

Example

real :: a,b
a = sqrt(5.0)
b = -sqrt(a)

write(*,10) a,b
10 format(2E14.5)

produces:
0.22361E+01 -0.14953E+01

5.5.4 Character Specification

General form nAm
O nisthe number of strings to print
QO m s the maximum number of characters to output

Example:
program chars
implicit none
character :-:a*10,b*10
a="hello"
b="goodbye*
write(*,10) a,b

10 format(2al0)

end program chars

Exercise 5.6

Using the format specifications in format.f95 as a guide, produce a table of

x e

where 0< X <1, for values of x in increments of 0.1. Write your output to a file called myoutput.
Ensure that your output lines up neatly in columns. An example program is neatoutput.f95 is available
on the website.

5.6 Implied Do Loop to write arrays
So far, the method we have used for input and output of arrays is:
integer :: col,row
real :: ra(l10,10)
lusing do loop
do row = 1,10
do col = 1,10

read *, ra(row,col)
write(*,*) ra(row,col)
end do
end do

Copyright © Janet A Nicholson 2011 33 fortrantutorial.com

The trouble with this method is that the rows and columns are not preserved on output. An
alternative, and neater method is to use an implied do loop in the write statement.
real :: ra(l10,10)
integer :: row,col
Tuse implied do
do row = 1,10
do col = 1,10

read *, ra(row,col)
end do
end do
do row=1,10
write(*,10) (ra(row,col),col=1,10)
end do

10 format(10f5.1)

Exercise 5.7

In Exercise 5.4 you wrote a program to produce and identity matrix. Apply what you know about
formatting now to make a neatly formatted matrix onscreen. There is an example identity1.f95
available on the website.

Copyright © Janet A Nicholson 2011 34 fortrantutorial.com

