4 Using Files and Extending Precision

4.1 Aims

By the end of this worksheet, you will be able to:
O Read from and write to files
O Use extended precision

4.2 Reading from files
In the real world, most of the data we use for our programs will be kept in files. We just need a
modification to the read statement that we are already familiar with to do this.
This program reads 3 numbers from a file called 'mydata.txt' into an array. Use Windows Notepad to
create such a file for yourself, or copy the file from mydata.txt which is on the website.
program readdata
implicit none
Treads data from a file called mydata.txt
real :: x,y,z
open(10,file="mydata.txt")
read(10,*) Xx,y,z
print *,x,y,z
end program readdata
The new material here are the lines
open(10,file="mydata.txt")
read(10,*) x,y,z
The open statement links the file called 'mydata.txt' with an input device numbered 10 (it doesn't

have to be 10, it could be any positive integer). To read from device 10, we just use it as the first
argument in the read statement.

Exercise 4.1

Use Notepad to create a file called evenodd.txt. In the file type 10 numbers, one per line. Write a
program that reads data from evenodd.txt one line at a time. Check if each number is even or odd and
print out a suitable message. One way to check if a number is even or odd is to use the mod intrinsic
function, like this...

it (mod(num,2)>0) then....

mod returns the remainder of the first argument divided by the second. If the return value is greater
than zero, then the number must be odd. Check program evenodd.f95 to see if you are correct.

Copyright © Janet A Nicholson 2011 22 fortrantutorial.com

4.3 Writing to files
This is a similar idea to reading from files. We need a new statement, though, instead of print, we use
write.
program i02
Tillustrates writing arrays to files
implicit none
real :: num
integer :: i
open(12,file="myoutput™)
do 1 = 1,100
num = 1/3.0
write(12,*) nums
end do
print *, "finished”
end program io2

Exercise 4.2

Write a program which reads in numbers from a file one at a time. If the number is positive, it should
store it in a file called 'positive.txt' and negative numbers in a file called 'negative.txt'.

4.4 Extending the precision

So far, we have used two types of variables, real and integer. The problem so far, as you will have
noticed on output, is that we are extremely limited by the number of significant digits that are
available for computation. Clearly, when we are dealing with iterative processes, this will lead rapidly
to errors. We can, however, extend the precision available from the single precision default, which
gives us 6 figure decimal precision to 15 figures by using a new specification for real numbers.

program extended
implicit none

integer, parameter :: ikind=selected real kind(p=15)
real (kind=ikind) :: sum,x
integer :: i
sum=0.0
do 1=1,100
X=1
sum = sum + 1.0/(xX**6)
end do

print *, sum
end program extended

produces the following output:
1.01734306196

Don't be put off by the odd looking code. In practice, the way of setting up this extended precision, is
pretty much the same for every program.

We state the precision we want by the argument p
integer, parameter :: ikind=selected_real_kind(p=15)

Copyright © Janet A Nicholson 2011 23 fortrantutorial.com

in this case, 15 decimal places. ikind is a new data type — a parameter. FORTRAN returns a value to
the parameter ikind that will be adequate to provide 15 digit precision. This code will work on any
machine irrespective of the architecture.

We declare that the variables are using extended precision by
real (kind=ikind) :: sum,x
Valid values for p are 6, 15 and 18. The default value for p is 6. If you ask for more precision than 18

digits, the compiler will complain with an error message. Try changing the values of p and see what
effect this has on the output.

The trouble with PRINT is that the programmer has no control over the number of digits output
irrespective of the selected precision .

Later on we'll come back to this when we learn about the WRITE statement, and output
formatting.

Note Unlike variables, parameters may not change once they are declared.

If we want to use constants in a program that uses extended precision, we have to tell FORTRAN that
they are also extended precision explicitly. This leads to the rather strange syntax you can see in the
following program.

program extendedconstants
Tdemonstrates use of extended precision
implicit none

integer, parameter :: ikind=selected_real_kind(p=18)

real (kind=ikind) :: val,x,y

val=10/3

print*,val 110/3 calculated as integer - wrong!
x=10.0

y=3.0

val=x/y Ix/y assigned to extended precision - right!
print*,val

val=10.0_ikind/3 Textend precision constant - right!
print*,val

val=10.0/3.0 Treal constants - wrong!
print*,val

val = .12345678901234567890 Treal constants - wrong!

print *, val

val = .12345678901234567890_ikind !ext precision consts - right!
print *, val

end program extendedconstants

You should run this program for yourself and think carefully about its implications. This program
demonstrates how easy it is to get calculations wrong. I'll leave this to you to experiment to ensure
that you fully understand the importance of properly declaring variables and the use of constants in
FORTRAN programming. A systematic approach to your programming will reduce the risk of errors as
will running programs with test data that have known solutions so that you can confirm that your
program is error free.

Copyright © Janet A Nicholson 2011 24 fortrantutorial.com

4.5 Magnitude limitations

We have already observed that there is a limitation of the accuracy with which we can do calculations
in FORTRAN (and indeed, any, computer language). There are also limitations on the magnitude of a
number. The various magnitude and precision limits are summarized in the following table:

Value of p Decimal places Range
6 6 (default) +10%
15 15 +10*”
18 18 +10%*

Exercise 5.3

To illustrate these limits copy file magnitude.f95 and run the program. Take a while to get a feel for
what is going on. Try inputting various values for the variable maxpower (eg 400). Can you confirm
that the table above is correct?

One interesting construct is
print *,i,2.0_ikind**i

Here, we are telling the compiler that the real constant 2.0 is also using extended precision. Check
what happens if you select extended precision (option 3) and enter a value of maxpower of 400. See
what happens if you rewrite the line to be

print *,i,2.0**i
Run the program again and enter the same values. Can you explain what is going on?

4.6 Convergence — exiting loops on a condition

In the program extended.f95, we found the sum of

x=10 1
6
x=1 X
It is useful to determine at what point such sums converge to a steady value — otherwise we may
make arbitrary assumptions about the summation range. Clearly, a point will be reached, within the
precision range that can be handled on our computer, that the term
1

6
X

will be too small to contribute to the sum. At this point we should exit the loop otherwise the
program will do more computation than is required.

One way to do this is to compare the value of the variable sum with its previous value, and if the
difference between the two is very small, then exit the loop.

Copyright © Janet A Nicholson 2011 25 fortrantutorial.com

program whileloop
implicit none
integer, parameter ::

ikind=selected_real_kind(p=15)

real (kind=ikind) :: sum,previoussum,x,smallnumber,error
integer :: i
sum=0.0

previoussum=0.0

smal Inumber = 10.0**(-15.0)

do 1=1,1000
X=1
sum = sum + 1.0 /(X**6)
error=abs(sum-previoussum)

it (error<smallnumber) then

print *,"sum ",sum,” number of loops

exit
end if
previoussum = sum
end do
end program whileloop

IMPORTANT NOTE

In the real world, we have to make choices about the amount of precision we need to work to. It is
pointless asking for 15 digits of precision if, for example, we can only take a measurement to + or —

1% accuracy!

It is not necessary to always use a loop counter in a do loop. If we don't actually specify a counter,

the program will loop forever. Constructs like this are OK:

smallnumber = _0000001_ikind

do
print *, "enter a positive number
read *, number
if (number <= smallnumber) exit
end do

The disadvantage is that, if you get the code wrong, you run the risk of the program looping forever —

generally it's safer to use a loop counter!

Copyright © Janet A Nicholson 2011 26

fortrantutorial.com

