3 Loops

3.1 Aims

By the end of this worksheet, you will be able to:
O Understand more about the use of real and integer variables and how to use a mixture of
data types in expressions
O Understand how to re-use code by looping
Q Know how to control the number of times a section of code is executed by using a do loop

3.2 Mixing variable types

Exercise 3.1

Copy divide.f95

Make sure you understand this

program divide
thoroughly!

implicit none
integer :: X

real :: vy

x =1

y = x/3

print *, y

end program divide

And run it. This program produces the following output:

0.00000
Something odd is happening. The problem is the line:
y=x/3

FORTRAN evaluates the right hand side of the assignment first using integer arithmetic, because
both x and 3 are integer. 1 divided by 3 cannot be stored as an integer, and so the value 0 is returned.
The result, 0, is then converted to a real number and the assigned to y.

Replace the line in program divide

X =1 by
x = 10

Your output should now be:

3.00000

Can you see what is happening? FORTRAN is keeping the integer part of the answer and throwing the
rest away.

Copyright © Janet A Nicholson 2011 17 fortrantutorial.com

To get over this problem, we have to signal to FORTRAN that we want it to calculate the right hand
side of the expression using real arithmetic. If we want to keep x as integer data type, we could re-
write our expression as follows:

y=x/3.0

The presence of a real number on the right hand side causes the right hand side of the expression to
be evaluated using floating point arithmetic.

Actually, the problem is even more complicated! Where we have an expression like
y=x* ((2**i)/3)
where x and y are real and i is integer, FORTRAN computes the result in stages:

First it calculates (2**i)/3 and evaluates it as an integer number, then multiplies the result by x and
evaluates it as real.

Exercise 3.2

Copy check.f95 to your computer.

program check
TInteger and real arithmetic

implicit none

real :: X,y

integer i

x=2.0

=2

y=x*((2**1)/3)

print *,y

y=x*((2.0**1)/3)

print *,y

end program check

... and examine its output. Make sure you understand why this is happening.

3.3 Thedo loop

Unless we are able to re-execute code, we might as well use a calculator... Now we start to take
advantage of the power of the computer.

Exercise 3.3

Copy program loop.f95

program loop

implicit none

integer :: i

do 1=0,20
print *,i

end do

Copyright © Janet A Nicholson 2011 18 fortrantutorial.com

end program loop

Run the program. It prints out the numbers from 0 to 20 in steps of 1.

Note:

O

i is called a loop counter. In this example, it has a start value of zero.

Q All the statements within the do and end do are executed. In this example there is just the
one statement, ie print.

O Each time the statements are executed, the loop counter, i, is incremented by 1.

O When the value of i is 20, the loop terminates, and the program resumes after the end do.

Change the do statement in program loop as follows:

do i = 50,70,2

Run the program. What happens?

The third argument in the do statement, is the increment step. If omitted, the value is taken as 1.

Loops can also decrement: try this

Exercise 3.4

Using a do loop to generate integer values of x between —10 and 10 in steps of 1, write a program
that constructs a table of values of

y=1.0/x

What happened when x had the value zero? Use an if, end if to test for the condition that gives the
incorrect value, and print out an appropriate message. Compare your result with divbyzero.f95.

Division by zero is one of the commonest reasons for a program to fail.

3.4 Nested Do Loops

We want to construct a table of values for z where
Z=X

for values of X in the range 1 to 2 in steps of 0.5 and
y in the range 1 to 2 in steps of 0.5

Work through the next exercise which illustrates this:

Copyright © Janet A Nicholson 2011 19 fortrantutorial.com

Exercise 3.5

Copy program xytab.f95 to your filespace.

program xytab
implicit none
Iconstructs a table of z=x/y for values of x from 1 to 2 and

ly from 1 to 4 in steps of .5

real X, Y, Z
print *,' X y z'
do x = 1,2
doy =1,4,0.5
z = x/y
print *, x,y,z
end do
end do

end program xytab

Examine its output. Notice the use of the first print to give a heading to the table.

3.5 Using loops to do summation

Earlier on, we discussed the idea of assignments.
x=1.0
means store the value 1.0 in the memory location called x.
If we had the following code:
x=1.0
x=x+1.0
print *, x
Can you guess what value would be printed out for x?

The answer would be 2.0.

Bearing in mind the definition of an assignment, the statement Really important!

x=x+1.0

means “add 1.0 to the value currently stored in memory location x and then store the result in
memory location x”.

Copyright © Janet A Nicholson 2011 20 fortrantutorial.com

Exercise 3.6

Copy file increment.f95 to your file space and examine its output.

program increment
implicit none
integer :-: 1
real -: X
x=1.0
do i=1,10
Xx=x+1.0
print *, 1,X
end do
end program increment

O Note carefully that we have set the initial value of x outside of the do loop. Why have we
done this? If you aren't sure — change the code to put the line x = 1.0 inside the loop — then
examine the output.

Q Itis important to understand that if we use constructions such as x = x + 1.0, then it is vital to
initialise x to some value. If we don't, it is possible that the value might be set to any random
number. Run the program, make a note of the final value of x then put an exclamation mark
in front of the x = 1.0 statement and run the program again.

Exercise 3.7

Edit the line x = x + 1.0 in program increment.f95, and change it to x = x * i. Re-run the program and
examine the output. What is significant mathematically about the sequence of numbers that has been

generated?

Copyright © Janet A Nicholson 2011 21 fortrantutorial.com

